Transverse Spin Results From STAR #### Yuxi Pan Department of Physics & Astronomy University of California, Los Angeles 2014 RHIC & AGS Annual Users Meeting - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - STAR upgrades # STAR's capabilities on transverse spin measurements #### Detector capabilities - ullet Central Region (-1 $<\eta<$ 1): π^\pm /K/p ID by dE/dX and TOF, e^\pm/γ by EMCAL, jets - Mid-Forward (1 $< \eta <$ 2): π^0 , η , direct γ , EM-jets from Endcap-EMCAL - Forward (2.5 $< \eta <$ 4.0): π^0 , η , EM-jets by Forward Meson Spectrometer # STAR's capabilities on transverse spin measurements #### Central Region $(-1 < \eta < 1)$ - inclusive jet A_N, Collins/IFF asymmetries A_{UT} - W^{\pm}/Z^0 boson A_N #### Mid-Forward (1 $< \eta <$ 2) • π^0 , η , EM-jets A_N #### Forward (2.5 $< \eta <$ 4.0) - \bullet π^0 , ηA_N - topology dependence of A_N through EM-jet/ π^0 , forward-forward/forward-central correlations Mid-rapidity inclusive jet A_N Collins/IFF Asymmetries W^{\pm}/Z^0 boson A_N Forward π^0 /EM-jet A_N on FM: - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 # Mid-rapidity inclusive jet A_N - Corresponding parton-jet p_T lower by 0.6-1.4 GeV/c - Sensitive to Sivers function $$\Delta^N f_{a/A} \!\!\uparrow \, \otimes f_{b/B}$$ $$T_F^q(x,x) = -\int \sigma^2 \overrightarrow{p}_\perp \frac{\overrightarrow{p}_\perp^2}{M} t_{1T}^{\perp q}(x,\overrightarrow{p}_\perp^2)|_{SIDIS}$$ Gluon-Gluon scattering dominates due to low x_T - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 # Collins Asymmetries at 200 GeV • 2-scale process described within TMD scheme by $h_1^2 \otimes f_{b/B} \otimes \Delta D_{\pi/q}$ ↑ assuming factorization 2012 STAR data provide higher precision and reduced systematic uncertainties. Preliminary results aimed for SPIN2014 # Collins Asymmetries at 500 GeV - Moments of $\sin(\phi_s \phi_h)$ sensitive to quark Collins asymmetry - Increased gluonic subprocess at $\sqrt{s} = 500$ GeV leads to small Collins asymmetries until large z_h # Collins Asymmetries at 500 GeV - Moments of $\sin(\phi_s 2\phi_h)$ sensitive to linearly polarized gluons - Gluon Collins-like asymmetries completely unconstrained # IFF Asymmetries for Di-hadron correlations Asymmetries persist in collinear scheme through $$h_1^{a/A^{\uparrow}} \otimes f_{b/B} \otimes H_{1,ot}^{\measuredangle c/C}$$ First signal of transversity in pp collisions # IFF Asymmetry projections with 2012 STAR Data @ 200 GeV Statistical uncertainties greatly reduced. Analyses of 200 GeV and 500 GeV data are ongoing Preliminary results aimed for SPIN2014 - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 ### Sivers function ### The sign change of Sivers function Critical test for TMD factorization and evolutions # pp: qqbar annihilation repulsive ISI #### Modified Universality - Sivers_{SIDIS} = -Sivers_{DY} = -Sivers_{W \pm /Z⁰} - lacktriangledown A_N^{γ} measures the sign change through Twist-3 - $A_{IIT}^{Sivers/SIDIS}$, A_N^{DY} and $A_N^{W^{\pm}/Z^0}$ together test TMD evolutions ### W^{\pm} identification - W^{\pm} identified via high p_T isolated electrons + p_T imbalance on the away-side - 2011 500GeV pp collisions, $\mathcal{L} = 25pb^{-1}$ ### W^{\pm} kinematics reconstruction - $P_T^W = -P_T^{recoil}$ (MC corrected) - $P_Z^W = P_Z^e + P_Z^\nu$, neutrino P_Z calculated by $M_W^2 = (E_e + E_\nu)^2 (\overrightarrow{p_e} + \overrightarrow{p_\nu})^2$ - Neutrino P_T is reconstructed from missing P_T #### Precoil corrected by MC to account for acceptance #### Good agreement between data/MC after P_T correction # W^{\pm}/Z^0 boson A_N From 2011 STAR Data # W^{\pm}/Z^0 A_N Projections for 2016 - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 # Forward Meson Spectrometer - Pb Glass calorimeter provides EM coverage in 2.5 $< \eta <$ 4.0 - small cells: 3.81x3.81cm² large cells: 5.81x5.81cm² - detect π^0 , η and jet-like events - Isolated π^0 from 2011 data shows flat p_T dependence - Analysis of inclusive π^0 A_N is ongoing - A successful twist-3 model (initial-/final-state, or both) would have to explain SSA in pp and SIDIS with the same set of parameters, plus evolutions # A_N for forward jet-like events - Apply Anti-k_T jet finding on FMS photons, R = 0.7 - Isolated π⁰ has larger asymmetries than jet-like events # A_N for forward jet-like events - Apply Anti-k_T jet finding on FMS photons, R = 0.7 - Isolated π⁰ has larger asymmetries than jet-like events - Study dependence of A_N on number of photons and away-side jet activities # A_N for forward jet-like events - Apply Anti- k_T jet finding on FMS photons, R = 0.7 - Isolated π⁰ has larger asymmetries than jet-like events - Study dependence of A_N on number of photons and away-side jet activities with and without a central EM-jet $p_T^{EMjet} > 2.0 \text{ GeV}$ # A_N for forward jet-like events - Apply Anti-k_T jet finding on FMS photons, R = 0.7 - Isolated π⁰ has larger asymmetries than jet-like events - Study dependence of A_N on number of photons and away-side jet activities with and without a correlated central EM-jet on the away-side $p_T^{EMjet} > 2.0 \text{ GeV}$ - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 ### Direct γ with FMS + Preshower detector for Run15 - FMS lead glass was exposed to sunlight to recover from radiation damage - ullet first two layers of preshower provides γ /charged-track separation and (x,y) - \bullet 3rd layer of preshower separates electrons and γ from charged hadrons ## Direct γ A_N for Run15 - $p^{\uparrow} + p @ \sqrt{s} = 200 \text{ GeV}, \mathcal{L} = 40pb^{-1}, pol. = 60\%$ - track matching between FMS and layer1 & 2 of preshower - $E_{cluster} > 15 \text{ GeV}, p_T > 2.0 \text{ GeV}$ - STAR's capabilities on transverse spin measurements - Status of STAR transverse spin analyses - Mid-rapidity inclusive jet A_N - Collins/IFF Asymmetries - W^{\pm}/Z^0 boson A_N - Forward $\pi^0/\text{EM-jet }A_N$ on FMS - 3 STAR upgrades - refurbished FMS + Preshower - Forward tracking + calorimeter for 2020 # Forward Tracking & Calorimeter System for 2020 - ECAL: W powder + scintillating filters σ_E / E = 0.11/ \sqrt{E} + 0.007 - HCAL: Lead plates + scintillating tiles σ_E / E = 0.58/ \sqrt{E} + 0.007 - Prototypes tested extensively at Fermilab - GEM technology from FGT design - Still in early stage of development ### Summary - STAR continues to deliver high quality transverse spin measurements for - Mid-rapidity jet A_N to probe gluon Sivers function - Mid-rapidity correlations to access transversity - W^{\pm}/Z_0 asymmetries to test TMD factorization & evolutions - A_N for forward hadron/jet-like events to shed light on the origins of the large transverse spin effects - STAR upgrades in the (near-) future will enable new exciting measurements - Forward direct photon - Forward jet, di-hadrons... ### Stay tuned! # Backup –2006 jet A_N , A_Σ and A_{TT}